ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Lucian Ivan (CNL), Scott Northrup (Univ of Toronto), Nusret Aydemir (CNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 17-26
The governing equations of thermal-hydraulic flows exhibit numerical stiffness as a consequence of significant differences in the physical behavior of the phase constituents and the presence of stiff source terms. Computational methods to cope with these issues are evaluated in this work based on a two-fluid model. To circumvent the stringent time-step restrictions of explicit schemes imposed by stability limits, a parallel implicit Newton-Krylov-Schwarz (NKS) approach is investigated. However, the ability to take a much larger time step is not tantamount to low computational cost, as implicit methods applied to multiphase flows do require the solution of a sparse, linear system of equations, which increases the memory requirements and computational cost per iteration. Parallel implementations of implicit schemes are also more difficult to achieve than those of explicit methods. Consequently, an assessment of the implicit method is required to guide the choice of optimal parameters for convergence acceleration, which in many instances is problem dependent. Previous studies on the computational cost of implicit vs. explicit methods for the same solution accuracy have not been conclusive. This work aims to expand the body of research on this issue by studying the properties of the parallel implicit NKS algorithm for a range of relevant thermal-hydraulic benchmark problems.