ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kazuo Takino, Kazuteru Sugino, Kenji Yokoyama (JAEA), Tomoyuki Jin (NESI Inc.), Shigeo Ohki (JAEA)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1214-1220
Since next-generation fast reactors aim to achieve a higher core discharge burn-up than that of the conventional ones, nuclear design methods need to refine. In this study, we investigated the effect that the analysis conditions exhibit on the accuracy of estimations of the burn-up nuclear characteristics of next-generation fast reactors. Suitable analysis schemes and conditions that maximize the estimation accuracy, while maintaining a low computational cost, were investigated in this study.
We performed core burn-up survey calculations under several analysis conditions. In the survey calculations, we calculated the criticality, burn-up reactivity, control rod worth, breeding ratio, assembly-wise power distribution, maximum linear heat rate, sodium void reactivity, and Doppler coefficient for the equilibrium operation cycles. The accuracy of the low-cost calculations was evaluated by measuring the agreements with the referential detailed conditions.