ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Akihiro Kitano (JAEA), Ken Nakajima (Kyoto Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1205-1210
In the Nuclear facilities, especially Fukushima daiichi nuclear power plant, radiation exposure reduction measures have to be carried out appropriately so as to be able to work in the place. Therefore, we need to grasp the radioactive contaminations level in the area. In order to specify the place and the density of the radioactive contamination, we had to estimate the radioactive contamination density of various locations by material sampling measurement, surface smear measurement, or surface dose rate measurement with collimated radiation detectors conventionally. However, these methods require a lot of time and work. To solve this problem, we are developing the estimation method of the radioactive contamination distribution with machine learning from the spatial dose rate that can be acquired easily.
The estimation of the radioactive contamination from the spatial dose has two issues mainly. One is the difficulty of the improving estimation accuracy because of radiation scattering and attenuation with the structure in the building. The other is that it takes much time to make the accurate model with simulation and so on. With machine learning, we will be able to estimate the contamination distribution quickly, and it will lead to exposure reduction of workers. In this study, we constructed the building model of the Operating floor of Fukushima daiichi unit3(1F-3), and set the radioactive contamination on the floor divided to 10×13 mesh. We trained the relationship of the spatial dose distribution with the radioactive contamination densities, locations, and the material structures in the area.
As the result, in the case of setting the various contamination densities to the each mesh, the estimated contamination densities were consistent with the setting contamination densities. Therefore, the feasibility of this method was confirmed.