ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
David Weitzel, Youho Lee (Univ of New Mexico), Michael Short (MIT), Michael Laufer (Kairos Power), Sam Sham (ANL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1176-1182
Much progress has recently been made on Molten Salt Reactor (MSR) technology with the strategic support of the Department of Energy (DOE). However, concerns regarding the structural material’s compatibility with the salt have hampered the detailed design and evaluation of reliability and economics. Existing research also neglects fluid flow when measuring alloy dissolution. FLiBe flow affects species diffusion through the salt and in turn modifies the reaction kinetics at the alloy surface. Without a proper understanding of the flow effects on alloy dissolution, MSR performance assessments will inevitably remain imprecise.
This research entails the construction of a subscale molten salt loop to test the effects of FLiBe flow on the corrosion rate of various alloys. Our test loop will consist of a molten salt pump connected to a bimetallic composite test loop with a sample holder for the tested alloys. The salt temperature and velocity can be varied independently to replicate the varied operating conditions in the MSR and better characterize the effects of FLiBe flow on corrosion. Investigating the effects of salt flow on alloy element dissolution will advance material choice for key reactor components. These findings will enable nuclear engineers to create more detailed and accurate plant designs.