ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
David Weitzel, Youho Lee (Univ of New Mexico), Michael Short (MIT), Michael Laufer (Kairos Power), Sam Sham (ANL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1176-1182
Much progress has recently been made on Molten Salt Reactor (MSR) technology with the strategic support of the Department of Energy (DOE). However, concerns regarding the structural material’s compatibility with the salt have hampered the detailed design and evaluation of reliability and economics. Existing research also neglects fluid flow when measuring alloy dissolution. FLiBe flow affects species diffusion through the salt and in turn modifies the reaction kinetics at the alloy surface. Without a proper understanding of the flow effects on alloy dissolution, MSR performance assessments will inevitably remain imprecise.
This research entails the construction of a subscale molten salt loop to test the effects of FLiBe flow on the corrosion rate of various alloys. Our test loop will consist of a molten salt pump connected to a bimetallic composite test loop with a sample holder for the tested alloys. The salt temperature and velocity can be varied independently to replicate the varied operating conditions in the MSR and better characterize the effects of FLiBe flow on corrosion. Investigating the effects of salt flow on alloy element dissolution will advance material choice for key reactor components. These findings will enable nuclear engineers to create more detailed and accurate plant designs.