ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Kyung Mo Kim, In Guk Kim, Yeong Shin Jeong, In Cheol Bang (UNIST)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1161-1167
Guarantee of the diversity by installation of additional safety system, having different working principle from the existing systems, could mitigate the suggested issues on the passive safety systems. Hybrid control rod-heat pipe, which is a passive decay heat removal device combining the functions of heat pipe and control rod, was proposed by UNIST in Republic of Korea as a passive safety system improving the diversity of passive safety in small modular reactors. It was designed to perform both functions of decay heat removal and reactivity control simultaneously. From the performance analysis, it was found that the designed hybrid control rod has sufficient decay heat removal capacity and reactivity worth. Additionally, hydraulic control rod drive mechanism, which controls the movement of control rod by hydraulic resistance, was designed to achieve fully-passive operation of the hybrid control rods eliminating the malfunction of CRDM owing to electromagnetic signal error. Based on the feasibility study for the concept of hybrid control rod and hydraulic control rod drive mechanism, detailed design of passive in-core cooling system (PINCs) for SMR consisting of hybrid control rods, hydraulic control rod drive mechanism, and heat sinks, was constructed considering the operations of PINCs during normal and accident conditions of reactor.