ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Shinji Matsushita, Masafumi Nojima (Hitachi), Takeshi Sakai, Tadashi Fujii (Hitachi-Ge Nuclear)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1098-1104
Corium cooling system plays an important role to prevent the interaction between the molten corium and concrete of a pedestal region. As the material for constituting the corium cooling system, zirconia-based refractory materials are promising due to its high melting points and chemical stabilities. To estimate the erosion depth of the refractory material in the severe accidents, we developed an interaction model for molten corium and zirconia refractory material based on the erosion mechanism. Our developed model were based on two main phenomena; reduction reaction of the zirconia refractory material and oxygen diffusion in the zirconia. On the interface of the molten corium, oxygen in the zirconia are extracted by the reduction reaction. On the other hand, in the zirconia, oxygen are transferred to the interface according to Fick's laws of diffusion because the reduction reactions induce concentration gradient of oxygen in the zirconia. Thus, the erosion rate of the zirconia are governed by the reduction reaction and oxygen diffusion. We modeled the erosion behaviors as three phase: (1) just reduction reaction phase, (2) transitional erosion phase, (3) steady erosion phase. As a result, we found that our model grasp the trend of the erosion behaviors. As the future works, we require to investigate the temperature dependency of the reduction reaction rate to evaluate more accurately.