ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Jinsuo Zhang, Shaoqiang Guo (Virginia Polytechnic Inst and State Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1029-1033
Molten salts have many applications in nuclear engineering, for example, pyroprocessing for used nuclear fuel treatment for which molten chloride salts are used, and molten salt rectors for which both chloride salt and molten fluoride salts are used. Materials corrosion is more challenging in these molten salt systems as the formation of the passivating oxide layer on the corrosion resistant alloys becomes thermodynamically less favorable. Materials corrosion in molten fluorides appears as bare alloy dissolution while the oxide layers formed in molten chlorides are typically porous, leading to the active metal dissolution in both molten fluoride and chloride salts. This restricts the use of many corrosion resistant alloys that rely on the passivating oxide layers. The present study conducted a critical review on materials corrosion in molten chloride and fluoride salts. The key environmental factors that influence corrosion in nuclear molten salt systems are discussed, including typical oxidants in the salt, fission product tellurium embrittlement, interactions with dissimilar materials, and temperature gradient. The historical development of corrosion resistant alloys for molten salt systems and recent attempts are also reviewed, and the effects of alloying elements and grain size were analyzed. One of the corrosion mitigation methods is to control the redox condition of the molten salt. Therefore, the study also analyzes the available redox control methods as well as the advantages and disadvantages of these methods. Finally, the current progress and challenges are summarized with an attempt at identifying the knowledge gaps and future research directions.