ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
C. Stansbury, M. Smith, P. Ferroni, A. Harkness, F. Franceschini (Westinghouse)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 998-1006
Development of the Westinghouse lead-cooled fast reactor (LFR) has continued; focused on quantifying drivers of cost and using that information to select new, innovative design characteristics to optimize economics while maintaining and harnessing the LFR’s promise of exceptional safety performance. An intelligent method of concept selection has been employed across a wide variety of systems and components to deliver the lowest total cost to operators. Multiple core designs and fuel management schemes are considered possible within the design, including very high burnup fuel to reduce fuel cycle cost and enhance proliferation resistance. Notably, Westinghouse is considering supercritical CO2 as advanced balance of plant technology, driving both economics and efficiency. When coupled to an innovative thermal energy storage system, the LFR will be capable of supporting the adoption of non-dispatchable grid resources by providing economical and scalable energy storage. By utilizing lead to achieve a plant economic objective, rather than a predetermined fuel mission, Westinghouse believes they can effectively deliver the promise of Generation IV nuclear technologies; low-cost, intrinsically safe, sustainable, and proliferation resistant, by combining the benefits of LFR technology with customer needs-driven innovation and the company's experience, matured over decades of nuclear power plant design, development, and commercialization.