ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
C. Stansbury, M. Smith, P. Ferroni, A. Harkness, F. Franceschini (Westinghouse)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 998-1006
Development of the Westinghouse lead-cooled fast reactor (LFR) has continued; focused on quantifying drivers of cost and using that information to select new, innovative design characteristics to optimize economics while maintaining and harnessing the LFR’s promise of exceptional safety performance. An intelligent method of concept selection has been employed across a wide variety of systems and components to deliver the lowest total cost to operators. Multiple core designs and fuel management schemes are considered possible within the design, including very high burnup fuel to reduce fuel cycle cost and enhance proliferation resistance. Notably, Westinghouse is considering supercritical CO2 as advanced balance of plant technology, driving both economics and efficiency. When coupled to an innovative thermal energy storage system, the LFR will be capable of supporting the adoption of non-dispatchable grid resources by providing economical and scalable energy storage. By utilizing lead to achieve a plant economic objective, rather than a predetermined fuel mission, Westinghouse believes they can effectively deliver the promise of Generation IV nuclear technologies; low-cost, intrinsically safe, sustainable, and proliferation resistant, by combining the benefits of LFR technology with customer needs-driven innovation and the company's experience, matured over decades of nuclear power plant design, development, and commercialization.