ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
A. J. Novak (Univ of California, Berkeley), L. Zou, J. W. Peterson, R. C. Martineau (INL), R. N. Slaybaugh (Univ of California, Berkeley)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 955-964
Pebble bed High Temperature Reactors (HTRs) are characterized by many advantageous design features, such as excellent passive heat removal in accidents, large margins to fuel failure, and online refueling potential. However, a significant challenge in the core modeling of pebble bed reactors is the complex fuel-coolant structure. This paper presents a new porous media simulation code, Pronghorn, that aims to alleviate modeling challenges for pebble bed reactors by providing a fast-running, mediumfidelity core simulator. Pronghorn is intended to accelerate the design and analysis cycle for pebble bed and prismatic HTRs by permitting fast scoping studies and providing boundary conditions for systems-level analysis. Pronghorn is built on the Multiphysics Object- Oriented Simulation Environment (MOOSE) using modern software practices and a thorough testing framework. This paper describes the physical models used in Pronghorn and demonstrates Pronghorn’s capability for modeling gas-cooled pebble bed HTRs by presenting simulation results obtained for the German SANA pebble bed decay heat experiments. Within the limitations of the porous media approximation and existing available closure relationships, Pronghorn predicts the SANA experimental pebble temperatures well, expanding the code’s validation base. A brief code-to-code comparison shows a level of accuracy comparable to other porous media simulation tools. Pronghorn’s advantages over these related tools include: an arbitrary equation of state, unstructured mesh capabilities, compressible flow models, the ability to couple to MOOSE fuels performance and systems-level thermal-hydraulics codes, and modern software design.