ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Özlem Yilmaz, Michael Buck, Jöoerg Starflinger (Univ of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 900-909
In case of a severe accident in a light water reactor, core melt can be released from the reactor pressure vessel and dislocate to the reactor cavity where it attacks the concrete structures. In order to avoid possible containment failure due to molten corium concrete interaction, the molten corium is to be retained and cooled. Core-catcher concepts considering water-injection via the bottom into the melt layer can lead to rapid quenching and solidification of the melt layer, forming a highly porous structure. The COMET-PC concept relies on porous concrete layers to distribute the water below the melt layer. This paper presents investigations on hydraulics of prototypical porous concretes that have been being used for the experimental verification of the COMET-PC core-catcher system. Pressure losses within these concretes were measured for various water flow rates to determine permeability and passability of the porous concretes. Measurement results were applied in simulations of COMET-PC experiments and reactor application with the COCOMO3D code. The simulation results show that using these concretes in large reactor cavity would not provide sufficiently homogeneous cooling of the entire corium layer unless additional water distribution systems are installed.