ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Özlem Yilmaz, Michael Buck, Jöoerg Starflinger (Univ of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 900-909
In case of a severe accident in a light water reactor, core melt can be released from the reactor pressure vessel and dislocate to the reactor cavity where it attacks the concrete structures. In order to avoid possible containment failure due to molten corium concrete interaction, the molten corium is to be retained and cooled. Core-catcher concepts considering water-injection via the bottom into the melt layer can lead to rapid quenching and solidification of the melt layer, forming a highly porous structure. The COMET-PC concept relies on porous concrete layers to distribute the water below the melt layer. This paper presents investigations on hydraulics of prototypical porous concretes that have been being used for the experimental verification of the COMET-PC core-catcher system. Pressure losses within these concretes were measured for various water flow rates to determine permeability and passability of the porous concretes. Measurement results were applied in simulations of COMET-PC experiments and reactor application with the COCOMO3D code. The simulation results show that using these concretes in large reactor cavity would not provide sufficiently homogeneous cooling of the entire corium layer unless additional water distribution systems are installed.