Concerns about climate change will require a transition from fossil fuels to nuclear, wind, and solar. Because energy is about 8% of the gross national product of the world, it is essential to avoid large increases in energy costs that would significantly decrease human welfare. Fossil fuel electricity generating systems have relatively low capital costs and high operating costs fuel. This characteristic enables economic variable electricity production that matches electricity demand because the cost of electricity from a fossil plant operating at part load is not that much different from a plant operating at full capacity.

Nuclear, wind and solar systems have high capital costs and low operating costs. If these electric generating assets are operated at half capacity, the cost of electricity is nearly doubled. Their high capital costs require full use of these systems. Wind and solar output depends upon location and local weather conditions they do not provide dispatchable electricity or dispatchable energy for other electricity and heat but operating nuclear plants at low capacity factors is expensive. The question is how do we create an economic power system with minimum burden to the society by a combination of low-carbon dispatchable and non-dispatchable energy sources, replacing the traditional role of fossil fuels, to fulfill the requirements for a safe, secure, affordable and environmentally acceptable energy source? Independent of concerns about climate change, development of nuclear systems that could provide dispatchable energy (electricity and heat) with base-load reactor core operation would broaden the capabilities to economically meet global energy needs a no-regrets nuclear energy strategy for the future.

To address these challenges researchers from the United States and Japan undertook a series of studies to address how to make this transition in the context of the Future of Nuclear Power. The Executive Summary [1] of the final report is below.