ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
H. Mazhar, C. Azih, R. David (CNL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 849-858
Nuclear power generation contributes over 50% electricity generation in Ontario and approximately 16% in Canada. Nuclear power is a reliable and clean energy generation technology. Although the amount of GreenHouse Gas (GHG) emissions from the nuclear power generation cycle is not insignificant, it is demonstrated to be much lower than that of fossil fuel energy systems. The GHG level depends on the entire cycle of the nuclear fuel which differs depending on the type of reactor and fuel used. There are several methodologies used in the literature to perform a complete nuclear life cycle assessment (LCA). Significant variations were reported due to the differences in the utilized analysis methods, different contributing phases in the life cycle, as well as the primary energy mix supplying the individual processes. The current study utilizes the process analysis method to perform a life cycle assessment of the Canadian nuclear fuel cycle and the environmental impact based on GHG emissions. The study utilizes the most up-to-date information on the energy mix, and processing methods for each phase of the cycle. This will help establish a fair comparison and to aid policy makers in deciding the future of the energy generating mix in Canada.