ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. H. Doniger, T. Chrobak, K. Dolan, K. Britsch, A. Couet, K. Sridharan (Univ of Wisconsin, Madison)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 799-804
A static corrosion experiment at UW-Madison aims to demonstrate the ability to mitigate corrosion of structural materials at 700?C by controlling the FLiBe salt redox condition. The utility of an electrochemical cell potential called the FLiBe salt redox potential is investigated as a metric for predicting the corrosive potential of FLiBe salt. In general, a salt which possesses a redox potential that is small in magnitude is considered less corrosive, more reducing, than a salt with a larger, more oxidizing, redox potential. The magnitude of the cell potential, measured between a molybdenum electrode and a dynamic beryllium reference electrode (DBRE), is correlated with the introduction of common FLiBe salt impurities, such as chromium, iron and nickel fluorides. Corrosion samples were exposed to FLiBe with varying redox conditions: as received purified FLiBe and FLiBe which has been chemically reduced with beryllium metal. The salts were characterized using the FLiBe salt redox potential and spectroscopic analytical chemistry to elucidate the importance of controlling the salt redox condition during reactor operation.