ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
W. H. Doniger, T. Chrobak, K. Dolan, K. Britsch, A. Couet, K. Sridharan (Univ of Wisconsin, Madison)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 799-804
A static corrosion experiment at UW-Madison aims to demonstrate the ability to mitigate corrosion of structural materials at 700?C by controlling the FLiBe salt redox condition. The utility of an electrochemical cell potential called the FLiBe salt redox potential is investigated as a metric for predicting the corrosive potential of FLiBe salt. In general, a salt which possesses a redox potential that is small in magnitude is considered less corrosive, more reducing, than a salt with a larger, more oxidizing, redox potential. The magnitude of the cell potential, measured between a molybdenum electrode and a dynamic beryllium reference electrode (DBRE), is correlated with the introduction of common FLiBe salt impurities, such as chromium, iron and nickel fluorides. Corrosion samples were exposed to FLiBe with varying redox conditions: as received purified FLiBe and FLiBe which has been chemically reduced with beryllium metal. The salts were characterized using the FLiBe salt redox potential and spectroscopic analytical chemistry to elucidate the importance of controlling the salt redox condition during reactor operation.