ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
Seul-Been Kim, Jaeho Lee, Goon-Cherl Park, Hyoung Kyu Cho (Seoul National Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 772-776
The necessity of the latest codes and methods for safety demonstration is increased to satisfy new safety requirement and achieve improved margin management. In this circumstance, it becomes an important issue that high-fidelity and multi-physics simulation with coupled T/H (Thermal-Hydraulics) and neutronics code for light water reactor whole core. With the improved computing power, the subchannel scale T/H analysis could be used as a suitable tool for pin-by-pin whole core simulation considering both accuracy of simulation and reasonable calculation time.
CUPID is a multi-dimensional two-phase flow analysis code developed by KAERI for the analysis of reactor core component. It has been validated against various experimental data and applied for practical nuclear applications. Recently, its applicability was extended to the subchannel scale T/H analysis. It is highly parallelized with the domain decomposition and message passing interface and these features facilitated the extension to use the code for the whole reactor core pipby- pin analysis in the subchannel scale. Required physical models for the subchannel scale analysis, for example, turbulent mixing and void drift models, were implemented and validated against available subchannel experiments.
In the present study, the grid spacer model was implemented for the enhancement of accuracy of the simulation. Afterwards, the mixing vane model was implemented considering lateral momentum exchange between adjacent subchannels by the mixing vane. For the validation of models, PSBT 5x5 experiment was simulated using CUPID, and the calculation result was compared with the CTF calculation. These implemented models can contribute to improve the prediction capability of CUPID for more realistic whole reactor core transient analysis.