ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
Seul-Been Kim, Jaeho Lee, Goon-Cherl Park, Hyoung Kyu Cho (Seoul National Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 772-776
The necessity of the latest codes and methods for safety demonstration is increased to satisfy new safety requirement and achieve improved margin management. In this circumstance, it becomes an important issue that high-fidelity and multi-physics simulation with coupled T/H (Thermal-Hydraulics) and neutronics code for light water reactor whole core. With the improved computing power, the subchannel scale T/H analysis could be used as a suitable tool for pin-by-pin whole core simulation considering both accuracy of simulation and reasonable calculation time.
CUPID is a multi-dimensional two-phase flow analysis code developed by KAERI for the analysis of reactor core component. It has been validated against various experimental data and applied for practical nuclear applications. Recently, its applicability was extended to the subchannel scale T/H analysis. It is highly parallelized with the domain decomposition and message passing interface and these features facilitated the extension to use the code for the whole reactor core pipby- pin analysis in the subchannel scale. Required physical models for the subchannel scale analysis, for example, turbulent mixing and void drift models, were implemented and validated against available subchannel experiments.
In the present study, the grid spacer model was implemented for the enhancement of accuracy of the simulation. Afterwards, the mixing vane model was implemented considering lateral momentum exchange between adjacent subchannels by the mixing vane. For the validation of models, PSBT 5x5 experiment was simulated using CUPID, and the calculation result was compared with the CTF calculation. These implemented models can contribute to improve the prediction capability of CUPID for more realistic whole reactor core transient analysis.