ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jun Wang (Univ of Wisconsin, Madison), Anil Gurgen (MIT), Michael L. Corradini (Univ of Wisconsin, Madison), Koroush Shirvan (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 755-762
In order to compare the thermal hydraulics system response to Accident Tolerant Fuel (ATF) materials, a benchmark was performed for early accident progression behavior given a Station Blackout scenario. Thermal hydraulic parameters such as the pressurizer pressure, reactor pressure vessel (RPV) water level, peak cladding temperature, and hydrogen mass generated were quantified by the TRACE code by a team at MIT and compared to MELCOR by a team at UW Madison. This benchmark comparison with TRACE and MELCOR used the same initial conditions for a simplified generic PWR plant model. This PWR model was based on a 2200MWth conventional light water reactor plant. The benchmark work included the input model development and the simulation comparisons for the thermal hydraulic response, pressurizer relief valve operation, and the clad oxidation. The Zircaloy cladding case and FeCrAl cladding case were compared in the current simulation. The result showed good agreement between TRACE and MELCOR for overall event timing and key parameters. The exothermic energy release from Zircaloy and FeCrAl clad oxidation were calculated and compared. The difference in oxidation energy between the clad materials was quite small when compared to decay heat values.