ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
H. Austregesilo, T. Hollands (GRS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 746-754
The thermal-hydraulic system code ATHLET is one main component of the German code package AC2, developed at GRS for comprehensive analyses of nuclear power plants under design basis and beyond design basis accident conditions. In the frame of code validation, five of the eight experiments performed in the German integral test facility PKL within the OECD/NEA joint project PKL-3 have been selected for the evaluation of code capabilities. One main focus has been the simulation of station blackout (SBO) scenarios. Calculation results show that ATHLET can adequately reproduce the main experimental phenomena, including pressure and temperature evolutions, coolant distribution in the primary circuit, and restart of natural circulation in the loop with emergency feedwater injection. Another main contribution to code validation was the simulation of small break loss-of-coolant (SBLOCA) tests. These tests have been designed as counterpart tests to experiments previously performed at the Japanese LSTF facility, providing a sound indication of the scalability of code results.