ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
H. Austregesilo, T. Hollands (GRS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 746-754
The thermal-hydraulic system code ATHLET is one main component of the German code package AC2, developed at GRS for comprehensive analyses of nuclear power plants under design basis and beyond design basis accident conditions. In the frame of code validation, five of the eight experiments performed in the German integral test facility PKL within the OECD/NEA joint project PKL-3 have been selected for the evaluation of code capabilities. One main focus has been the simulation of station blackout (SBO) scenarios. Calculation results show that ATHLET can adequately reproduce the main experimental phenomena, including pressure and temperature evolutions, coolant distribution in the primary circuit, and restart of natural circulation in the loop with emergency feedwater injection. Another main contribution to code validation was the simulation of small break loss-of-coolant (SBLOCA) tests. These tests have been designed as counterpart tests to experiments previously performed at the Japanese LSTF facility, providing a sound indication of the scalability of code results.