ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Joseph R. Burns, David Chandler (ORNL), Bojan Petrovic (Georgia Tech), Kurt A. Terrani (ORNL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 738-745
The application of advanced manufacturing to the fabrication of control elements (CEs) for the High Flux Isotope Reactor (HFIR) is under investigation at the Oak Ridge National Laboratory. Advanced manufacturing yields a unique CE design with lumped neutron absorbers, necessitating investigation of the neutronic implications of employing this novel CE design in HFIR. This work assesses the operational performance of advanced manufactured CEs in HFIR throughout their useful lifetime. CE depletion calculations are carried out for long residence time (50 cycles) under several predictor-corrector approximation schemes of varying rigor, with their reactivity worth evaluated at beginning, middle, and end of life. While coarse temporal divisions of the long CE irradiation time yield prominent discrepancies in the isotopic content predicted by each approximation, the corresponding reactivity worth predictions are reasonably consistent across approximations. Further, regardless of the approximation employed, the reactivity worth of the advanced manufactured CEs is found to be comparable to that of the original CEs throughout their useful lifetime. The core power distribution is also not prohibitively perturbed by the introduction of the new CE design at any time in the CE life. Pending irradiation characterization testing, it may thus be concluded that the advanced manufactured CE design can successfully replace the current design and is neutronically feasible for the operation of HFIR.