ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Joseph R. Burns, David Chandler (ORNL), Bojan Petrovic (Georgia Tech), Kurt A. Terrani (ORNL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 738-745
The application of advanced manufacturing to the fabrication of control elements (CEs) for the High Flux Isotope Reactor (HFIR) is under investigation at the Oak Ridge National Laboratory. Advanced manufacturing yields a unique CE design with lumped neutron absorbers, necessitating investigation of the neutronic implications of employing this novel CE design in HFIR. This work assesses the operational performance of advanced manufactured CEs in HFIR throughout their useful lifetime. CE depletion calculations are carried out for long residence time (50 cycles) under several predictor-corrector approximation schemes of varying rigor, with their reactivity worth evaluated at beginning, middle, and end of life. While coarse temporal divisions of the long CE irradiation time yield prominent discrepancies in the isotopic content predicted by each approximation, the corresponding reactivity worth predictions are reasonably consistent across approximations. Further, regardless of the approximation employed, the reactivity worth of the advanced manufactured CEs is found to be comparable to that of the original CEs throughout their useful lifetime. The core power distribution is also not prohibitively perturbed by the introduction of the new CE design at any time in the CE life. Pending irradiation characterization testing, it may thus be concluded that the advanced manufactured CE design can successfully replace the current design and is neutronically feasible for the operation of HFIR.