ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
Chenglin Zhu, Yuhang Yan, Shuo Li, Hui Yu (SPICRI)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 732-737
The cosLATC is a multi-group two-dimensional lattice code developed by SNPSDC, which is an essential part in the COSINE(Core and System Integrated Engine) code package. Resonance self-shielding calculation is a very important part in the reactor physics calculation. It provides effective cross section for the next transport calculation. Traditional two-region resonance calculation method based on equivalence theory was developed in the cosLATC code. However, for the fuel pin which contains strong resonance self-shielding effect or huge absorption cross section nuclides, the spatial variation of the self-shielding effect is crucial to determine its radial power distribution. The equivalence theory assumes a spatially constant cross section within the fuel region and cannot evaluate spatially dependent resonance self-shielding effect. So the SDDM (Spatially Dependent Dancoff Method) self-shielding resonance was developed in the latest version of cosLATC which can split the fuel pellet into arbitrary number of annuli and generate the effective cross section for every annulus. A serial of benchmarks are calculated to verify this new resonance self-shielding module were performed. These benchmarks include different assembly problems of Watts Bar benchmark and critical benchmarks. The results show that the new resonance self-shielding module is capable of modeling the resonance self-shielding in a variety of PWR benchmarking cases, including difficult fuel lattice cases with poison, control rods or mixed gadolinia fuel rods. The critical calculation results can be accepted for the lattices which the conditions vary with the enrichment, radius of fuel rods, lattices pitch and experimental buckling.