ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Joshua Stone, Hangbok Choi, Robert W. Schleicher (General Atomics)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 685-693
Accident Tolerant Fuels (ATF) are being developed f to replace current zircaloy clad fuels in light water reactors (LWRs) to improve both safety and economic performance. As part of this effort, General Atomics (GA) is developing silicon carbide fiber – silicon carbide matrix composite (SiC-SiC) cladding to provide larger safety margins, high burnup capability, longer cycle lengths and uprated operation. In order to quantify the advantage of SiC-SiC over zircaloy, GA has modified the transient fuel performance code, FRAPTRAN, for modeling SiC-SiC-based cladding using public and private SiC property data and GA-developed failure models. The present work compares the performance of SiC-SiC verses zircaloy cladding around UO2 fuel for transients which can lead to damage of the fuel cladding. The transient cases selected are French CABRI reactor tests for Pressurized Water Reactor (PWR) fuel at hot coolant conditions, Japanese NSRR tests at cold coolant conditions, Halden IFA-650 and Power Burst Facility (PBF) LOC-11C. Results show the SiC-SiC cladding offers comparable or superior performance to zircaloy for the cases analyzed.