ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
F. Payot, C. Journeau, C. Suteau, F. Serre (CEA), M. Gradeck, N. Rimbert, A. Lecoanet (Univ of Lorraine), A. Miassoedov (KIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 657-666
The strategy used in ASTRID Sodium Fast Reactor Demonstrator to mitigate the consequences of a postulated severe accident relies on the presence of dedicated corium discharge tubes between the active core region and the lower plenum and an in-vessel core catcher in the lower plenum to collect and cool the molten fuel. In this situation, the corium progression from the core towards the core catcher could lead to jet impingement on the core catcher surface and a subsequent degradation of the core-catcher material(s). After a review of the existing experimental database, it appeared necessary to define a dedicated experimental R&D program related to the long-lasting jet impingement on thick material plates. A particular behaviour will be studied when a molten pool is created (named “pool effect”) at the impingement point that reduces the heat transfer at the jet-material interface. In this scope, experimental tests with simulants and prototypic materials will be carried out by using the most possible representative conditions (e.g. Reynolds and Prandtl numbers) for ESFR (European Sodium Fast Reactor) severe accident conditions. Three R&D program have been proposed:
(i) Ice-water jet impingement, the few results in the literature show a good agreement between ice-water jet system and metal wall/metal jet system which justifies the use of such simulant materials for investigating the impingement behaviour. The JOLO facility will be designed at LEMTA Nancy University.
(ii) Molten steel jet impingement on the thick wall. The MOCKA facility in the Karlsruhe Institute of Technology will be used.
(iii) Dedicated test section PLINIUS-2 IMPACT will be designed in future PLINIUS 2 large-mass prototypic-corium experimental platform at CEA Cadarache.