ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
James Schneider, Mark Anderson (Univ of Wisconsin, Madison), Emilio Baglietto (MIT), Sama Bilbao y Leon (Virginia Commonwealth Univ), Matthew D. Bucknor (ANL), Sarah Morgan (Virginia Commonwealth Univ), Matthew Weathered (ANL), Liangyu Xu (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 642-649
The sodium fast reactor (SFR) is the most mature reactor concept of all the generation-IV nuclear systems and is a promising reactor design that is currently under development by several organizations. The majority of sodium fast reactor designs utilize a pool type arrangement which incorporates the primary coolant pumps and intermediate heat exchangers within the sodium pool. These components typically protrude into the pool thus reducing the risk and severity of a loss of coolant accidents. To further ensure safe operation under even the most severe transients a more comprehensive understanding of key thermal hydraulic phenomena in this pool is desired. One of the key technology gaps identified for SFR safety is determining the extent and the effects of thermal stratification developing in the pool during postulated accident scenarios such as a protected or unprotected loss of flow incident. In an effort to address these issues, detailed flow models of transient stratification in the pool during an accident can be developed. However, to develop the calculation models, and ensure they can reproduce the underlying physics, highly spatially resolved data is needed. This data can be used in conjunction with advanced computational fluid dynamic calculations to aid in the development of simple reduced dimensional models for systems codes such as SAM and SAS4A/SASSYS-1.