ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
Nadish Saini, Shrey Satpathy, Igor A. Bolotnov (NCSU)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 635-641
In the dispersed flow film boiling regime the dominant path of heat transfer from the fuel rods is to the entrained droplets in the reactor sub-channels. The heat transfer coefficient strongly correlates to the surface area of the droplets, which is effectively characterized by the Sauter mean diameter. Owing to the interaction of droplets with spacer grids and mixing vanes sharp increase in heat transfer coefficients are reported immediately downstream of spacer grids by prior experiments.
In this study, using state of the art computing facilities and the massively parallel PHASTA code, we present high resolution simulations of droplet-spacer grid interactions under conditions similar to DFFB flow regime. Level-set based interface tracking method is used to resolve the interface between the two phases. Fully developed turbulent flow field is obtained from single-phase steam flow adiabatic simulations. Two-phase simulations are performed by superimposing the level set contour over the obtained single phase velocity field. The results from twophase simulations demonstrate the capability of PHASTA code to capture the interface during droplet spacer-grid collision events.
The objective of the present work is to collect numerical data on the Sauter mean diameter of droplets downstream of spacer grids. The data will be compared with the experiments and existing mechanistic correlations in the literature for Sauter mean diameter modification due to spacer grids. The results from the simulations will serve to improve the correlations in thermal hydraulic codes and can also serve as training data for reduced order twophase flow modeling.