ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Sajid Iqbal, Muhmood ul Hassan, Ho Jin Ryu, Jong-Il Yun (KAIST)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 623-627
We have investigated the low temperature sintering behavior of pure hydroxyapatite (HA) and silica incorporated HA for the immobilizing radioactive nuclear waste. Solid state sintering conditions were optimized at 200 ?C by applying a uniaxial pressure of 400 MPa for a short holding time (10 min). The results from high resolution x-ray diffraction, Fourier transform infra-red spectroscopy, micro hardness, and high resolution scanning electron microscopy confirmed the densification with enhanced mechanical properties. The increasing trend in relative sintered density has been observed with the loading amount of silica. No additional chemicals and binders were used during whole experimentation process. Therefore, this sintering route is totally environment benign, energy efficient and simplified. The ultra-low temperature can makes this sintering process widely useful for the immobilization of volatile radionuclides such as Cs-137 and I-129.