ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Sajid Iqbal, Muhmood ul Hassan, Ho Jin Ryu, Jong-Il Yun (KAIST)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 623-627
We have investigated the low temperature sintering behavior of pure hydroxyapatite (HA) and silica incorporated HA for the immobilizing radioactive nuclear waste. Solid state sintering conditions were optimized at 200 ?C by applying a uniaxial pressure of 400 MPa for a short holding time (10 min). The results from high resolution x-ray diffraction, Fourier transform infra-red spectroscopy, micro hardness, and high resolution scanning electron microscopy confirmed the densification with enhanced mechanical properties. The increasing trend in relative sintered density has been observed with the loading amount of silica. No additional chemicals and binders were used during whole experimentation process. Therefore, this sintering route is totally environment benign, energy efficient and simplified. The ultra-low temperature can makes this sintering process widely useful for the immobilization of volatile radionuclides such as Cs-137 and I-129.