ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Sajid Iqbal, Muhmood ul Hassan, Ho Jin Ryu, Jong-Il Yun (KAIST)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 623-627
We have investigated the low temperature sintering behavior of pure hydroxyapatite (HA) and silica incorporated HA for the immobilizing radioactive nuclear waste. Solid state sintering conditions were optimized at 200 ?C by applying a uniaxial pressure of 400 MPa for a short holding time (10 min). The results from high resolution x-ray diffraction, Fourier transform infra-red spectroscopy, micro hardness, and high resolution scanning electron microscopy confirmed the densification with enhanced mechanical properties. The increasing trend in relative sintered density has been observed with the loading amount of silica. No additional chemicals and binders were used during whole experimentation process. Therefore, this sintering route is totally environment benign, energy efficient and simplified. The ultra-low temperature can makes this sintering process widely useful for the immobilization of volatile radionuclides such as Cs-137 and I-129.