ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Charles Forsberg (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 612-622
Research and development is underway on three classes of nuclear reactors that use salt: (1) Fluoride Salt-Cooled High-Temperature Reactors (FHRs) with clean fluoride salt coolants and solid fuel, (2) Molten Salt Reactors (MSRs) with fuel dissolved in either a fluoride or chloride salt and (3) salt-cooled fusion reactors with fluoride salts for cooling, tritium production and shielding. These reactors require salt coolant cleanup systems for corrosion control and removal of impurities (corrosion products, activation products and fission products) with solidification of the waste products for disposal.
From 1950 to the 1970s there was significant work on salt processing associated with MSR programs—but until recently little new research on salt purification and conversion of halide wastes into acceptable waste forms. Since the 1970s major developments in related fields have created the technology base for advanced salt cleanup and waste solidification processes—the backend of salt-reactor fuel cycles.
We describe pathways from (1) the molten salts in the reactor systems to (2) separations with recycle of salt to the reactor and a waste salt stream to 3) conversion of waste salts into final waste forms. The separations options include distillation, electrochemical and other processes. Waste form requirements depend upon (1) the chemical and radio-isotopic composition, (2) laws and regulations and (3) disposal site waste acceptance criteria. For high-level wastes (HLWs), the waste treatment options include converting waste salts into iron phosphate or borosilicate waste glasses with recycle of the chloride (especially if chloride-37 is used) or fluoride anion. Iron phosphate and borosilicate are the standard chemical forms for disposal of HLWs in geological repositories. Significant work will be required to sort out preferred options and address major uncertainties.