ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Charles Forsberg (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 612-622
Research and development is underway on three classes of nuclear reactors that use salt: (1) Fluoride Salt-Cooled High-Temperature Reactors (FHRs) with clean fluoride salt coolants and solid fuel, (2) Molten Salt Reactors (MSRs) with fuel dissolved in either a fluoride or chloride salt and (3) salt-cooled fusion reactors with fluoride salts for cooling, tritium production and shielding. These reactors require salt coolant cleanup systems for corrosion control and removal of impurities (corrosion products, activation products and fission products) with solidification of the waste products for disposal.
From 1950 to the 1970s there was significant work on salt processing associated with MSR programs—but until recently little new research on salt purification and conversion of halide wastes into acceptable waste forms. Since the 1970s major developments in related fields have created the technology base for advanced salt cleanup and waste solidification processes—the backend of salt-reactor fuel cycles.
We describe pathways from (1) the molten salts in the reactor systems to (2) separations with recycle of salt to the reactor and a waste salt stream to 3) conversion of waste salts into final waste forms. The separations options include distillation, electrochemical and other processes. Waste form requirements depend upon (1) the chemical and radio-isotopic composition, (2) laws and regulations and (3) disposal site waste acceptance criteria. For high-level wastes (HLWs), the waste treatment options include converting waste salts into iron phosphate or borosilicate waste glasses with recycle of the chloride (especially if chloride-37 is used) or fluoride anion. Iron phosphate and borosilicate are the standard chemical forms for disposal of HLWs in geological repositories. Significant work will be required to sort out preferred options and address major uncertainties.