ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
Liqiang Hou, Dahuan Zhu, Qing Wu, Jian Deng, Xiao-li Wu (Nuclear Power Inst of China)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 578-583
The focusing effect of the metal molten pool plays an important role in elevating the validity of the In-Vessel Retention (IVR) during a severe accident while the melting of the shroud and basket can contribute to the formation of the metal molten pool. Therefore, the study on the melting behavior of the shroud and basket can offer technical support for the validity analysis of IVR. The method of computational fluid dynamics (CFD) has been used to establish a two-dimensional calculation model of the 1/8 core of ACP1000 to study the melting behavior of the shroud and basket during the severe accident of large LOCA. The core has been divided into ten nodes in the axial direction and the radiation model and the solidification and melting model have been considered during the calculation. The results show that the shroud at six out of ten nodes and the basket at five out of ten nodes have melted totally before the first significant migration of the core and that the basket always starts to melt after the shroud has melted totally at the same node.