ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Liqiang Hou, Dahuan Zhu, Qing Wu, Jian Deng, Xiao-li Wu (Nuclear Power Inst of China)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 578-583
The focusing effect of the metal molten pool plays an important role in elevating the validity of the In-Vessel Retention (IVR) during a severe accident while the melting of the shroud and basket can contribute to the formation of the metal molten pool. Therefore, the study on the melting behavior of the shroud and basket can offer technical support for the validity analysis of IVR. The method of computational fluid dynamics (CFD) has been used to establish a two-dimensional calculation model of the 1/8 core of ACP1000 to study the melting behavior of the shroud and basket during the severe accident of large LOCA. The core has been divided into ten nodes in the axial direction and the radiation model and the solidification and melting model have been considered during the calculation. The results show that the shroud at six out of ten nodes and the basket at five out of ten nodes have melted totally before the first significant migration of the core and that the basket always starts to melt after the shroud has melted totally at the same node.