ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jarmo Kalilainen, Haeseong Kim, Abdel Dehbi, Terttaliisa Lind (PSI)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 571-577
Particle depletion in an enclosure with turbulent natural convection was investigated using severe accident code MELCOR 2.1. A model of the experimental DIANA facility was created and the results of the simulation were compared against the experimental and LES data from earlier work. Three particle sizes 0.5 ?m, 1.0 ?m and 2.5 ?m were used in the study. The temperature difference between the vertical isothermal walls of the enclosure was varied between 40 K, 20 K and 10 K. The MELCOR model reproduced the stratified temperature field and the encircling natural convective flow in the cavity qualitatively. The deposition rate was well matched between the MELCOR and experimental data, but further analysis indicated that the thermophoresis was overestimated in the MELCOR modeling, thus compensating for the turbulent deposition, which was not considered in this MELCOR simulation work.