ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Mauricio Tano, Pablo Rubiolo (Univ of Grenoble-Alpes), Julien Giraud, Veronique Ghetta (LPSC, CNRS/IN2P3)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 533-542
Inverse problem methods deal with the evaluation of the causal factors that result on a set of measurements or observations. Inverse problems found in nuclear reactors involve non-linear and coupled physical phenomena, making the causation effects complicated to de assessed. Furthermore, the extent of the experimental data collected is limited and this data is subjected to experimental noise. In the following paper, a method for solving inverse problems in nuclear reactors with coupled physical phenomena is developed. In the proposed approach, the inverse problem is solved through the minimization of a performance function. The minimization of this performance function is achieved with a preconditioned gradient descendent method. The generalized gradient of the performance function is obtained using the adjoint of the multiphysics equations of the system. Furthermore, for reducing the sensitivity to noise of the inverse problem, a preconditioner based in a Kalman Filter is developed. As an example, the methodology is applied for solving the inverse problem of finding the heat flux in the wall of a natural convection experiment.