ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Brandon. Chisholm, Steven Krahn, Allen Croff, Paul Marotta (Vanderbilt Univ), Andrew Sowder (EPRI), Nicholas Smith (Southern Co.)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 513-522
Molten Salt Reactors (MSRs) are an example of an advanced reactor designs that differ substantially from the existing commercial technology. Because the safety assessment of such reactor designs will require consideration of hazards that are not present in light water reactors (LWRs), a flexible method is needed to comprehensively identify and analyze new hazards and event sequences. This work demonstrates the application of a specific Process Hazards Analysis (PHA) methodology to select auxiliary systems of the Molten Salt Reactor Experiment (MSRE) design in order to provide safety insights to the design of these subsystems, as well as produce results that can be carried forward into more quantitative risk assessment approaches. Additionally, ongoing work to develop an MSR-specific component reliability database to support quantitative risk assessment is also described.