ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ibrahim Jarrah, Rizwan uddin (Univ of Illinois)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 503-512
The spent fuel dry cask should remain subcritical under normal, abnormal, and accident conditions. The cask becomes susceptible to criticality if it is misloaded with assemblies that do not conform with the Certificate of Compliance (CoC). To avoid this scenario, the cask loading process involves several verification steps to make sure that all of the loaded assemblies satisfy the CoC requirements. However, most of loading and verification steps are carried out by humans with finite probabilities for errors, which need to be quantified. In this paper, the probability of misloading a cask with light water reactor (PWR and BWR) fuel is quantified using the event tree method. Probability distribution functions for all of the human errors are obtained using the SPAR-H human reliability analysis method. The Fussell-Vesely (FV) importance measure is performed to determine the tasks that contribute the most to the having a misloaded cask. The probability of misload is found to be 5.56E-06 for cask loaded with the PWR and 2.95E-05 for the cask loaded with the BWR fuel. Both of these are considered to be small.