ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Mauricio Tano, Pablo Rubiolo (Univ of Grenoble-Alpes), Julien Giraud, Veronique Ghetta (LPSC, CNRS/IN2P3)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 469-478
The main passive safety system of the Molten Salt Fast Reactor (MSFR) is a cold plug, placed in the bottom of the reactor. In case of an uncontrolled temperature rise in the reactor core, this plug melts, allowing the draining of the molten fuel salt towards a safe configuration. In the present paper, the main physical phenomena occurring in the MSFR during the draining process is presented. Then, a physical model for simulating the draining process is introduced. This model is then used for analyzing different draining scenarios. Finally, the velocity and temperature fields obtained for this scenarios are analyzed in the light of safety considerations.