ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Ruixian Fang, Dan G. Cacuci (Univ of South Carolina)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 451-459
The “predictive modeling for coupled multi-physics systems (PM_CMPS)” methodology is applied in this work to the numerical simulation model of the mechanical draft cooling tower (MDCT) located in the F-area at Savannah River National Laboratory (SRNL) in order to improve the predictions of this model by combining computational information with measurements of outlet air humidity, outlet air and outlet water temperatures. At the outlet of this cooling tower, where measurements of the quantities of interest are available, the PM_CMPS reduces the predicted uncertainties for these quantities to values that are smaller than either the computed or the measured uncertainties. The PM_CMPS has also been applied to reduce the uncertainties for quantities of interest inside the tower’s fill section, where no direct measurements are available. The maximum reductions of uncertainties occur at the locations where direct measurements are available. At other locations, the predicted response uncertainties are reduced by the PM_CMPS methodology to values that are smaller than the modeling uncertainties arising from the imprecisely known model parameters.