ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
Jinyong Feng (MIT), Tarek Frahi (Institut National des Sciences et Techniques Nucléaires), Emilio Baglietto (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 341-350
Turbulent mixing of different temperature fluids in T-junction geometries is a technically critical issue for the safe operation of power plants. Due to the strong flow deformation, the scale separation assumption is not respected locally, limiting the applicability of classic unsteady Reynolds-averaged Navier-Stokes (URANS) models, which are unable to deliver the required accuracy in the prediction of temperature fluctuations. On the contrary, eddy resolving methods, and in particular large eddy simulation (LES), can provide reliable results at a computational cost that is still impracticable for the industry.
A robust second-generation URANS (2G-URANS) model was recently proposed at MIT, which aims at locally resolving complex flow structures. In the present paper, the performance of the structure-based (STRUCT) model is assessed specifically against low Reynolds number (??????=4,485) DNS data on a T-junction case. Velocity and temperature distributions in the mixing region are compared between URANS, STRUCT and LES solutions and the reference DNS data. The STRUCT model demonstrates significant advancement in the ability to model the thermal striping phenomena. Its application produces accurate predictions of the flow behavior on coarse URANS computational grids, with a large cost saving in comparison to LES.