ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jinyong Feng (MIT), Tarek Frahi (Institut National des Sciences et Techniques Nucléaires), Emilio Baglietto (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 341-350
Turbulent mixing of different temperature fluids in T-junction geometries is a technically critical issue for the safe operation of power plants. Due to the strong flow deformation, the scale separation assumption is not respected locally, limiting the applicability of classic unsteady Reynolds-averaged Navier-Stokes (URANS) models, which are unable to deliver the required accuracy in the prediction of temperature fluctuations. On the contrary, eddy resolving methods, and in particular large eddy simulation (LES), can provide reliable results at a computational cost that is still impracticable for the industry.
A robust second-generation URANS (2G-URANS) model was recently proposed at MIT, which aims at locally resolving complex flow structures. In the present paper, the performance of the structure-based (STRUCT) model is assessed specifically against low Reynolds number (??????=4,485) DNS data on a T-junction case. Velocity and temperature distributions in the mixing region are compared between URANS, STRUCT and LES solutions and the reference DNS data. The STRUCT model demonstrates significant advancement in the ability to model the thermal striping phenomena. Its application produces accurate predictions of the flow behavior on coarse URANS computational grids, with a large cost saving in comparison to LES.