ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Ignazio Beghi, Sabrina Tietze, Terttaliisa Lind (PSI), Horst-Michael Prasser (ETH Zürich)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 302-309
Wet scrubbers are commonly used in Filtered Containment Venting Systems (FCVS) due to their high collection efficiency for aerosol particles, and due to the possibility of simultaneously retaining gas phase species, such as elemental iodine (I2) and organic iodides (e.g. methyl iodide). Whereas proven to be efficient for aerosol particle retention, gas phase elemental iodine and organic iodide retention in wet scrubbers is limited due to several factors. In this investigation, the retention of elemental iodine in a wet scrubber was determined in a small-scale experimental facility. To investigate the effect of pool hydrodynamics on the elemental iodine retention, the flow rate was varied, resulting in different flow regimes. In addition, the gas residence time in the scrubber was varied by changing the water level in the facility. As the added chemicals had an effect on the hydrodynamic behavior of the scrubber, the tests were always carried out with the relevant wet scrubber chemicals. Tests were carried out at different flow regimes, i.e., bubbly and churn-turbulent flow, to determine the effect on iodine retention. Iodine retention close to the injection orifice, in the „injection zone“, was studied separately from the „bubble rise zone“. The experimental results were compared with existing pool scrubbing codes.