ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
Dan Zhang (Nuclear Power Inst of China)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 247-251
CSR1000 (China supercritical water reactor, 1000MWe) was developed by NPIC, as BWR, the pressure vessel’s reactor and directly circulate loop was adopted, however, the coolant will encounter double flow pass in the reactor. The passive engineering safety feature was adopted and the reactor residual heat will be removed by natural circulation of coolant. As above character, loss of feed water or loss of offsite power will cause completely loss of forced flow accident, the flow in first pass of core will encounter flow inversion during this course, these factor make the LOFA(Loss Of forced Flow Accident) become one of the most limiting accident in CSR1000. The LOFA was analyzed by APROS. The result shows, during the short time of LOFA, the passive operation of HFT will mitigate the accident, and during long term, the passive residual heat removal system will function and maintain the core within the safety state.