ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Wael Hilali, Nihed Lasmar, Michael Buck, Joerg Starflinger, Eckart Laurien (Univ of Stuttgartf)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 229-238
One of the crucial questions in the management and mitigation of the consequences of a severe accident in light water reactors (LWR) is how to cool and stabilize the molten corium. For several designs of LWR, a deep pool of water is foreseen in the lower drywell of the containment. In the case of the failure of the reactor pressure vessel, the core melt materials will be discharged into the pool. By contact with water, it will fragment, solidify and settle on the bottom forming a porous debris bed. A two-dimensional continuum model of the deposition and relocation of particles is described in this paper. The mathematical model is based on a hyperbolic system of partial differential equations determining the distribution of the flowing layer depth and the depth-averaged velocity component tangential to the sliding bed. Because of the hyperbolicity of the system, successful implementation of a solver is challenging, notably when large gradients of the physical variables appear, e.g., for a moving front in the flowing layer or possibly formed shock waves during the deposition. In this paper, several numerical methods are applied to solve the system and compared, including the first-order upstream difference scheme, as well as the Roe’s Riemann solver, and high-resolution NOC (Non-Oscillatory Central Differencing) schemes, in which several TVD (Total Variation Diminishing) limiters and reconstruction methods are applied. The implemented solver has provided promising results, which are verified with analytical solutions in the steady state. The spatial convergence is also reported and quantified with the use of the grid convergence index (GCI). The performed simulations with this modeling approach give some useful insights for the study of the most critical parameters influencing granular bed formation process. It will contribute to the enhancement of the capabilities of the system code COCOMO simulating real reactor applications and providing more realistic data.