ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
Yoshiro Nishioka, Satoru Kuboya, Yuya Takahashi, Hideki Horie, Mika Tahara (Toshiba Energy Systems & Solutions Corp), Tadashi Fujii (Hitachi-GE Nuclear Energy, Ltd), Takafumi Tsuji (Chubu Electric Power Co., Inc.)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 223-228
The passive debris cooling system provides a means to stably hold and cool the molten core (debris) dropped from the reactor vessel by the heat resistant material laid on the bottom of the containment vessel. As a heat resistant material, high melting point and highly corrosion-resistant oxide is laid on the pedestal and water is injected afterwards to suppress MCCI by the molten core. In the past research, although knowledge about molten core and concrete has been acquired, knowledge about interaction between molten core and heat resistant material is insufficient. Therefore, element tests on heat resistant materials were conducted, various heat resistant materials were screened, and molten core - heat resistant material interaction model was constructed using the obtained findings. Using the constructed model, we evaluated the erosion / heat transfer behavior of the heat resistant material assuming the bottom of the BWR / Mark - II type containment vessel at the time of severe accident and confirmed the MCCI suppression effect by the passive debris cooling system.