ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Wael Hilali, Michael Buck, Joerg Starflinger (Univ of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 215-222
In a hypothetical severe accident in light water reactors, a deep pool of water is employed in the lower drywell of the containment, to cool the core melt materials discharged from the reactor pressure vessel. By contact with water, the molten corium will fragment, solidify and settle at the bottom as a porous debris bed. The preeminent goal becomes how to prevent the re-melting of the debris in consequence of insufficient cooling. One of the main factors affecting the ability of decay heat removal is the geometrical configuration of the bed, which can also change due to the particles redistribution induced by steam production within the bed. In this work, the influence of steam production on bed formation was investigated experimentally with the dedicated BeForE-facility. A series of experiments were conducted by discharging solid particles in in two-dimensional viewing vessel, while air bubbles simulating the steam production are injected simultaneously from the bottom. Depending on the quantity of the settled particles on the top of each section of the vessel, air flow rate is so monitored and adjusted in time to simulate the corresponding amount of steam produced by the similar quantity of debris. Based on the obtained experimental results, a numerical model is established to simulate the two-dimensional debris bed formation under the influence of steam production.