ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Xinyu Zhao, Eugene Shwageraus (Univ of Cambridge)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 198-205
GeN-FOAM is a multi-physics solver based on the OpenFOAM library developed at PSI/EPFL, Switzerland for transient analyses of fast reactors. The current version of GeN-FOAM can simulate a wide range of transients with flexible spatial resolution. One of the main limitations of the current version, however, is relatively simple fuel temperature calculation model. Also, the effects of fuel structural and dimensional changes as a function of temperature, composition and burnup are currently not considered. This work first presents the integration of an advanced fuel performance modelling tool TRANSURANUS developed at Joint Research Centre (JRC)-Karlsruhe into the GeN-Foam solver. The new coupled tool is referred to as the GeN-transFoam. The original GeN-Foam doesn't have burnup calculation capability which makes it very inconvenient to simulate a reactor at the end of cycle, especially when an accurate fuel behaviour prediction is expected. The paper reports a simple way to implement the burnup calculation, given the configuration of the GeN-Foam solver. The GeNtransFoam solver with account for burnup effects is used to analysis the European Sodium Fast Reactor (ESFR) at the end of cycle (EOC) in steady state condition. The neutronics calculation results are compared with results provided by Monte Carlo calculation. In the end, the burnup calculation in the code is discussed.