ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shangzhen Xie, Jiyun Zhao (City Univ of Hong Kong)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 172-181
External reactor vessel cooling (ERVC) is proved as a necessary system in in-vessel retention management in the nuclear power plant to transfer the heat from failed core to outside vessel, in the aim of preserving intact vessel and avoiding severe accidents. To provide advanced safety guarantee for the next generation of nuclear power plant, a greater designed safety margin should be considered and proposed, such as increasing the tolerance of high heat flux by using advanced materials of the vessel, insulated structures between reactor core and the vessel, and superior coolant in ERVC system. As long as the heat flux of the reactor vessel wall emerged from melt-core does not go beyond the maximum limitation?Critical Heat Flux (CHF), the decay heat can be dissipated timely and thus the reactor can be cooled down without releasing radiation products. In this case, increasing critical heat flux by various approaches is deemed essential also attract intensive studies in nuclear systems. In fact, the research of the enhancement of critical heat flux has a long history, with extensive experiments and simulations devoted in the last several decades to seeking for methods to expand thermal margin and it continues to be a promising topic in heat transfer research fields. In this paper, we present a comprehensive overview of CHF enhancement experiments, focusing on four broad categories of approaches. The first approach considered is amelioration of fluid properties by adding nanoparticles into the base fluid, by which both flow boiling and pool boiling achieve significant improvements in CHF. The second prevailing method recently is surface modifications by various advanced techniques. Third, we review the effect of various modified channel structures on the boiling process. Finally, some creative and notable hybrid techniques are presented. Based on this review of the state-of-the-art in CHF enhancement, future research directions are also proposed.