ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
F. Franceschini (Westinghouse), G. Grasso (ENEA), P. Ferroni (Westinghouse)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 137-142
A companion paper at this conference (Ref. 1) describes the Westinghouse LFR, a Generation IV, ultra-compact, highly simplified, passively safe, scalable reactor plant with economics, safety, and scalability as the key elements informing its design. Traditionally, engineering decisions have made the plant more or less safe with an inverse relationship between cost and safety. The LFR breaks this paradigm with design choices aiming at a safer plant while improving economics. The fuel selection is a case in point, as elucidated by this study which illustrates the potential of various fuels to meet various core design objectives and fuel cost metrics. In particular, it is shown that uranium nitride (UN) is the favorite fuel option for the LFR. Metal fuel (U-10Zr) is a suitable alternative, especially for the startup core given the more significant experience in the U.S. which would likely accelerate its qualification relative to UN. This study shows that UN is superior to uranium silicide (U3Si2) with a comfortable margin in the breakeven cost for 15N enrichment. All advanced fuel candidates have significantly superior fuel cycle cost (FCC) performance relative to UO2 and are particularly suitable options for extending the fuel cycle length.