ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Jean-Baptiste Droin, Vincent Pascal, Paul Gauthe, Frédéric Bertrand, Gédéon Mauger (CEA)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 128-136
The present paper is dedicated to preliminary studies of the transient behavior of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) demonstrator developed in France by CEA and its industrial partners. ASTRID is foreseen to demonstrate the progress made in Sodium Fast Reactor (SFR) technologies at an industrial scale by qualifying innovative options, some of which still remain open in the areas requiring improvements, especially safety and operability. Among the innovative options, a gas Power Conversion System (PCS) based on the Brayton thermodynamical cycle is currently considered. The main objective of such a PCS consists in physically avoiding the possibility of a sodium/water reaction with the secondary circuit.
To assess the transient behavior of such a PCS when facing incident/accident sequences, previous calculations were carried out using the CATHARE 2 thermal-hydraulics code, which considers by default the working gas as an ideal gas in its Equations Of States (EOS). However, this approximation is no longer valid for the high pressure levels of this Brayton cycle. This paper thus describes new calculations performed considering real gas EOS that are now available in CATHARE 3. The simulation of the nominal PCS working point is shown to be much more accurate than in previous CATHARE 2 calculations as the discrepancy regarding the theoretical working point is less than 1°C for the gas temperature and less than 1 % for all the components power levels (compressors, heat exchangers and turbines). The impact of this new real gas hypothesis in CATHARE 3 on an unprotected transient simulation has also been investigated on a loss of power supply case. For short time scales, the impact of such an hypothesis is demonstrated to be very low. However, an improvement of the heat extraction with the real gas option should enhance the natural convection in the primary circuit to the longer term.