ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Guillaume Martin, Maxime Guyot (CEA), Fréderic Laugier (EDF DCN), Gérald Senentz (Framatome), Guillaume Krivtchik (CEA), Bertrand Carlier (ORANO), David Lecarpentier, Frédéric Descamps (EdF R&D), Christine Chabert, Romain Eschbach (CEA)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 103-112
In France, the COSI6 software can simulate prospective scenarios of nuclear energy evolution. Nuclear scenarios focused these last years on the development of SFR technology. However, SFR are more expensive to build than thermal reactors. In case SFR would not become economically competitive in the next decades, MOX spent fuels would pile-up in the backend of the fuel cycle, unless alternative solutions of plutonium management in PWR were found. In this study, advanced EPR (European Pressurized water Reactor) fuel designs are applied to enable plutonium multi-recycling and stabilization of all spent fuel: CORAIL refers to fuel assemblies containing LEU and MOX rods, and MIX (also called MOXEUS) to assemblies where fuel rods are composed of plutonium mixed with enriched uranium.
Scenarios results reveal that introducing MIX and CORAIL in EPR by the middle of the century can lead to a fast stabilization of spent fuel and plutonium inventories. With respect to open cycle, more minor actinides (MA) accumulate (about +70%), but the production of transuranic elements (Pu + MA) remains almost 3 times less. Furthermore, all high-level wastes are now packaged for long-term storage.
Besides, spent fuels still contain significant quantities of fissile uranium. In MIX scenarios however, this uranium may be enriched and easily recycled into dedicated EPR for efficient natural uranium savings. In this case, the resource balance is significantly better than in open cycle (-30%). Multi-recycling in PWR appears therefore to be a viable temporary solution, allowing for spent fuels and wastes management until we expect the running out of natural uranium.