ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jarod Wilson, Sara Hauptman, Akshay Dave, Kaichao Sun, Lin-wen Hu (MIT), Ruimin Ji, Yang Zou (CAS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 76-83
The growing global demand for emission-free energy is creating a market for advanced Generation-IV NPP, and the Fluoride salt-cooled High-temperature Reactor design with a pebble-type fuel is a promising candidate. However, this design also brings unique challenges, namely evaluating the effects of the fuel’s distribution and dynamic movement. Generating explicitly described fuel pebble loading patterns is non-trivial. This study serves two main purposes: 1) to investigate the neutronic performance of pebble type fuel within the TMSR-SF1, and 2) to conduct a preliminary comparison between pebble coordinate generation methods. The first method of coordinate generation, the Discrete Element Method (DEM), is a particle-tracking model which accounts for inter-particle forces. While this method generates packing distributions closer to real-world scenarios, it is computationally intense. The alternative method analyzed is a mathematical model (MM), which fills arbitrary domains through simple geometric rules on the addition of particles. This method, while less realistic, generates coordinates significantly faster. Afterwards, fuel pebble coordinates from both methods are utilized to generate inputs for high-fidelity neutronics modelling. The results of these simulations, with the aid of various tools within Python, allowed for the neutronic analysis of the core, specifically when considering the eigenvalues of each coordinate set, and the fission power distribution within the fuel pebbles. It was found that the packing fraction in the axial direction to be consistent within the MM coordinate generation method, and the general trends similar between it and DEM-generated coordinates. Additionally, the eigenvalues of the simulated core were found to be proportional to the number of pebbles within the core. Finally, the fission power distribution of the cores was found to be qualitatively consistent both within many sets of MM-generated coordinates, and in comparisons of the two coordinate generation methods.