ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jason B. Meng, Francesco Deleo (TerraPower)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 51-59
The TerraPower-developed mechanical analysis code OXBOW is used to evaluate the mechanical performance of Traveling Wave Reactor core assemblies. Benchmarking work was performed using OXBOW to compare displacement and contact load results against a variety of mechanical analysis codes from the International Working Group on Fast Reactors (IWGFR) for a set of well-defined assembly conditions. Significant differences in results were found in the benchmark problem modeling a thermally bowing row of assemblies in a limited free bow core restraint configuration. This is due to a bridging effect which occurs due to differences in contact modeling methodology. Additionally, significant displacement differences in results were found in the benchmark problem modeling duct dilation under internal pressure, temperature, and irradiation. These differences are due to the fact that OXBOW dilation models account for both stress relaxation and geometric nonlinearities. Differences in results between OXBOW and the IWGFR benchmark participants are attributed to higher fidelity models generated using OXBOW.