ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Travis W. Knight, Jamil Khan, Tanvir Farouk (Univ of South Carolina), James Tulenko (Univ of Florida), Joshua Tarbutton (Univ of North Carolina, Charlotte)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 940-944
An experimental facility has been designed and constructed to investigate vacuum drying of used nuclear fuel for placement in dry cask storage. The motivation for this study was to demonstrate the drying of used nuclear fuel using industry practice and provide the experimental data for development of drying models. A full size BWR fuel assembly (Areva Atrium 10A) with depleted uranium rods and 12 heater rods to simulate decay heat of used fuel is utilized in experiments. The fuel assembly with an interchangeable rod and chamber are designed to examine drying of key features of concern such as failed fuel rods, a BWR water rod, a PWR guide thimble, porous neutron absorber materials, spacer disks, etc. The vacuum chamber simulating the storage cask contains structure similar to baskets for the fuel assembly and surrounding rails to center in the chamber. A test plan is currently being executed and involving separate effects tests of individual features and combined tests with selected features to provide data for the development of drying models to describe drying as a function of cask variables such as temperature, pressure, and relative humidity. The experimental plan follows typical industry practice of vacuum drying in stages stepping down in pressure and separated by hold times to provide indication of excess water retained by observation of pressure rise due to boiling of water.