ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Travis W. Knight, Jamil Khan, Tanvir Farouk (Univ of South Carolina), James Tulenko (Univ of Florida), Joshua Tarbutton (Univ of North Carolina, Charlotte)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 940-944
An experimental facility has been designed and constructed to investigate vacuum drying of used nuclear fuel for placement in dry cask storage. The motivation for this study was to demonstrate the drying of used nuclear fuel using industry practice and provide the experimental data for development of drying models. A full size BWR fuel assembly (Areva Atrium 10A) with depleted uranium rods and 12 heater rods to simulate decay heat of used fuel is utilized in experiments. The fuel assembly with an interchangeable rod and chamber are designed to examine drying of key features of concern such as failed fuel rods, a BWR water rod, a PWR guide thimble, porous neutron absorber materials, spacer disks, etc. The vacuum chamber simulating the storage cask contains structure similar to baskets for the fuel assembly and surrounding rails to center in the chamber. A test plan is currently being executed and involving separate effects tests of individual features and combined tests with selected features to provide data for the development of drying models to describe drying as a function of cask variables such as temperature, pressure, and relative humidity. The experimental plan follows typical industry practice of vacuum drying in stages stepping down in pressure and separated by hold times to provide indication of excess water retained by observation of pressure rise due to boiling of water.