ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Corey Trujillo, Mustafa Hadj-Nacer, Miles Greiner (Univ of Nevada, Reno)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 917-924
In this paper, the effect of rarefaction on the fuel cladding temperature is investigated. To do this, we apply a temperature-jump thermal-resistance to ANSYS/Fluent CFD simulations of a vacuum drying operation in geometrically-accurate two and three-dimensional models of a loaded nuclear fuel canister. The numerical model represents a vertical canister and basket loaded with 24 Westinghouse 15 × 15 PWR fuel assemblies. The model includes distinct regions for the fuel pellets, cladding and gas regions within each basket opening. Symmetry boundary conditions are employed so that only one-eighth of the package cross section is included. The canister is assumed to be filled with helium. A uniform temperature of 101.7°C is employed on the canister outer surfaces to conservatively model canister surrounded with boiling water.
Steady-state simulations are performed for different fuel heat generation rates and helium pressures, ranging from atmospheric pressure to 100 Pa. These simulations include conduction within solid and gas regions, and surface-to-surface radiation across all gas regions. Constant thermal accommodation coefficients, which characterize the effect of the temperature-jump thermal-resistance at the gas-surface interface are employed. The peak cladding temperature and its radial and axial locations are reported. The maximum allowable heat generation that brings the cladding temperatures to the normal radial hydride formation limit (TRH = 400°C) is also reported. The results of the three-dimensional model simulations are compared to two-dimensional model simulations for the same heat generation rate and pressures.
The results show that the rarefaction condition causes the temperature of the rods to significantly increase compared to the continuum condition (atmospheric pressure). This causes the maximum allowable heat generation for rarefied condition to decrease. The three-dimensional model predicts temperature that are ~15 to 35°C lower than the two-dimensional model.