ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Scott M. Richards (Univ of Tennessee), Brandon R. Grogan (ORNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 899-905
The Inverse Depletion Theory (INDEPTH) code is one of the tools being used to analyze the traditional nondestructive assay (NDA) measurements and verify the initial enrichment, burnup, and cooling time values of spent nuclear fuel (SNF) declared by facilities. The INDEPTH code attempts to reconstruct the initial enrichment and operating history by using the Oak Ridge Isotope Generation (ORIGEN) code to simulate irradiation and cooling of the fuel. This work examined the sensitivity of INDEPTH results to variations in irradiation conditions. Three types of measured data were simulated to identify possible sources of systematic error. An absolute gamma measurement with a gross neutron count produced more accurate answers than either the relative gamma measurement or the absolute gamma measurement by itself in most cases. However, long shutdown times between irradiation cycles were found to greatly affect the accuracy, with the absolute gamma plus gross neutron counts case losing the most accuracy. In these cases, the added neutron data either did not significantly improve the results or made them worse.