ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Xia Bing, Jiong Guo, Chunlin Wei, Ding She, Jian Zhang, Fu Li (Tsinghua Univ)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 848-852
The pebble bed high temperature reactors (PB-HTRs) are one of the promising reactor types for the next generation nuclear systems. Some intrinsic features of the PB-HTRs’ spherical fuel element embedded with the TRISO coated fuel particles bring high proliferation-resistance to the PB-HTR spent fuel storage, including the continuous on-line fueling strategy, the difficulty of processing TRISO particles, the low heavy metal density in the fuel pebbles and the high depletion of plutonium. The material accountancy concept and methodology of PB-HTR spent fuel storage are proposed in this work. For PB-HTRs, the spent fuel storage should be treated as an item facility; however, the items in PB-HTR spent fuel storage are the spent fuel containers, instead of the spent fuel assemblies in conventional PWR’s spent fuel storage. The accountancy of nuclear material should be implemented by evaluating the average burnup value of a batch of spent fuels. For the equilibrium core of PB-HTR, the average burnup value of a batch of spent fuel pebbles is determined by the integral power during the period when these pebbles are unloaded from the reactor core. Furthermore, the burnup value of each spent fuel pebble can also be measured by gamma spectroscopy upon the long-lived fission product 137Cs. After evaluating the spent fuel burnup, the dependency of the amounts of heavy metal nuclides upon the burnup value of a spent fuel pebble is estimated by the depletion calculations. It is revealed that the non-proliferation features of PB-HTR spent fuel storage is excellent and the accountancy methodology proposed in this work is feasible. Besides the high safety features, the high proliferation-resistance can be another attraction of the PB-HTRs.