ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Industry Update—December 2025
Here is a recap of recent industry happenings:
Agreement signed on advanced nuclear technology in space
Texas-based space technology and orbital logistics developer Space Ocean Corporation and New Mexico–based space nuclear power systems developer Space Nuclear Power Corporation (SpaceNukes) have signed a letter of intent to explore the integration of advanced nuclear reactor technology into future space missions. Space Ocean agreed to test SpaceNukes’ 10-kilowatt microreactor aboard its ALV-N satellite and, if performance criteria are met, to use SpaceNukes as a core supplier of reactors for future Space Ocean lunar and planetary missions. The companies also agreed to examine the integration of fluid delivery systems with reactor modules, to collect operational data to support technology readiness certification, and to form a joint working group to pursue additional space infrastructure and commercial opportunities.
Katherine A. Daniels, Jon F. Harrington (British Geological Survey), Mark Jensen (NWMO)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 826-833
The Bruce nuclear site in Canada has been proposed to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW). The repository would be constructed within a low permeability, argillaceous limestone, the Upper Ordovician age Cobourg Formation. Here, we present the results of two steady-state laboratory hydraulic conductivity tests performed to measure the intrinsic permeability of rock core samples from the Cobourg and overlying Queenston shale formations; both samples were measured under an isotropic confining pressure using a constant head approach. Pump pressures and volumes were recorded for upstream and downstream pumps, throughout testing. The resulting hydraulic inflow and outflow rates were measured for each sample under two different pressure gradients, yielding exceptionally low values of permeability (on the order of 10-22 m2 or 0.1 nD). These data provide further evidence of the applicability of existing steady-state experimental methods to obtain reliable estimates of extremely low permeabilities from rock core samples under re-established in-situ stress conditions. The exceptionally low permeability of these formations, consistent with in-situ testing and formation scale estimates obtained during the site characterisation program, along with their low porosities, renders them an effective barrier to hydraulic flow for the purpose of geological isolation.