ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
L. Chen, J. Liu, H. Y. Zhang, Z. H. Zong, J. Wang (Beijing Research Inst of Uranium Geology)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 710-717
In this paper, the application of a new rock mass classification system QHLW in the site selection of China’s underground research laboratory was presented. The QHLW system considers both the long-term safety and constructability requirements of the host rock for geological disposal of high-level radioactive waste. Compared to the conventional Q system, some additional parameters, including the fracture zone, groundwater chemistry and thermal effect are taken into account in light of their significant influence on the long-term safety of geological disposal. By using QHLW system, the suitability of 9 candidate sites of the underground research laboratory for geological disposal in China was quantitatively evaluated. According to the classification results, Xinchang site located in Beishan area is considered to be the most suitable site.