ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L. Chen, J. Liu, H. Y. Zhang, Z. H. Zong, J. Wang (Beijing Research Inst of Uranium Geology)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 710-717
In this paper, the application of a new rock mass classification system QHLW in the site selection of China’s underground research laboratory was presented. The QHLW system considers both the long-term safety and constructability requirements of the host rock for geological disposal of high-level radioactive waste. Compared to the conventional Q system, some additional parameters, including the fracture zone, groundwater chemistry and thermal effect are taken into account in light of their significant influence on the long-term safety of geological disposal. By using QHLW system, the suitability of 9 candidate sites of the underground research laboratory for geological disposal in China was quantitatively evaluated. According to the classification results, Xinchang site located in Beishan area is considered to be the most suitable site.